TheRaiser'sEdge”

Enterprise™

API Essentials Guide

022708

©2008 Blackbaud, Inc. This publication, or any part thereof, may not be reproduced or transmitted in any
form or by any means, electronic, or mechanical, including photocopying, recording, storage in an
information retrieval system, or otherwise, without the prior written permission of Blackbaud, Inc.

The information in this manual has been carefully checked and is believed to be accurate. Blackbaud, Inc.,
assumes no responsibility for any inaccuracies, errors, or omissions in this manual. In no event will
Blackbaud, Inc., be liable for direct, indirect, special, incidental, or consequential damages resulting from
any defect or omission in this manual, even if advised of the possibility of damages.

In the interest of continuing product development, Blackbaud, Inc., reserves the right to make improvements
in this manual and the products it describes at any time, without notice or obligation.

All Blackbaud product names appearing herein are trademarks or registered trademarks of Blackbaud, Inc.
All other products and company names mentioned herein are trademarks of their respective holder.
RE7Enterprise-APIGuide-022708

APl Essentials
Guide

ESSENTIALS. ..ttt e e 1
Using This GUIDEo e e 3
Objectsand Object Models. 6
The Raiser’s Edge Type Library. ... e 7
The Raiser’s Edge Object Fundamentals oo, 1
Data OB JeCtS . . . o vt 13
Programming Child Objectsand Collections 21
Adding and Deleting Child Objects i 30
Filtering Data Object Collections.o 32
Error Handling.o 33
User Interface (Ul) ObjJects.t 34
Raiser’s Edge ActiveX Controlsot 37
SBIVICE ODJECtS . . . vttt 44
REPOrt ObjJeCtS . . .ot 49
Advanced Concepts and Interfaces i, 79
Custom View: Creating Custom Parts.t 84
APl . 93
What IS AP 2. . 96
AP VS, VB A 97
APl Programming Fundamentals i i 97
The APL IN ACtiON . ..o 103
PIUG-INS . o 119
The Raiser’s Edge Object MetaViewerc i 125
APIL Code Samples o 126
Plug-In Code Samples 127
INDEX . ..o 129

)
wd
-
()
wd
-
O
O

? What Is In This Guide?

Using the API Essentials Guide, your technical staff can learn how to use the
optional module API for Advanced Application Development to customize
programs that integrate with your Raiser’s Edge system. For example, a program
developer can create seamless links from The Raiser’s Edge to other software
programs, such as patient tracking, ticketing, and the Internet. You can also learn
about the following:

» “The Raiser’s Edge Object Fundamentals” on page 11
» “Advanced Concepts and Interfaces” on page 79

e “Custom View: Creating Custom Parts” on page 84

» “API Programming Fundamentals” on page 97

» “The Raiser’s Edge Object MetaViewer” on page 125
» “API Code Samples” on page 126

* “Plug-In Code Samples” on page 127

@ How Do | Use These Guides?

The Raiser’s Edge user guides contain examples, scenarios, procedures, graphics,
and conceptual information. Side margins contain notes, tips, warnings, and space
for you to write your own notes.

To find help quickly and easily, you can access the Raiser’s Edge documentation
from several places.

User Guides. You can access PDF versions of the guides by selecting Help,
User Guides from the shell menu bar or by clicking Help on the Raiser’s
Edge bar in the program. You can also access the guides on our Web site at
www.blackbaud.com. From the menu bar, select Support, User Guides.

In a PDF, page numbers in the Table of Contents, Index, and all
cross-references are hyperlinks. For example, click the page number by any
heading or procedure on a Table of Contents page to go directly to that page.

Help File. In addition to user guides, you can learn about The Raiser’s Edge by
accessing the help file in the program. Select Help, The Raiser’s Edge Help
Topics from the shell menu bar or press F1 on your keyboard from anywhere
in the program.

Narrow your search in the help file by enclosing your search in quotation
marks on the Search tab. For example, instead of entering Load Defaults,
enter “Load Defaults”. The help file searches for the complete phrase in
quotes instead of individual words.

v

WELCOME

Essentlals

Contents
Whois This Guide FOr?. e 3
Documentation Mapo 4
Programming Language oot 4
Sample Code. e 4
Raiser’s Edge Programming Essentials 5
Objectsand Object Models i 6
What Are Objects and Object Models? 6
The Raiser’s Edge Object Model 6
Data ObjeCtSot e 6
The Raiser’s Edge Type Library. 7
Using Early Bound Objects and the Type Library 7
Using the Type Library from VBA. i 8
Accessing the References Dialog 9
Setting a Reference to The Raiser’s Edge Type Library................ 10
Using the Type Library from an API Application 10
Accessing the References Dialog from Visual Basic 5.0 and Higher. 11
The Raiser’s Edge Object Fundamentals. 11
The SesSIONCONTEXEottt 11
Accessing the SessionContext from VBA. 12
Accessing the Session Context from APl 12
Initializing and Releasing Objects i, 13
The Init and CloseDown Methods. 13
Data Objectso 13
Data Object Hierarchy i e 14
What Are “Top Level” Objects?. 14
LoadingaDataObject e 15
How Many Ways Can | Load a Data Object?........................ 15
An Alternate Method to Load Data Objects—The Database ID.......... 15
Using The Raiser’s Edge Search Screen to Load Your Data Object 16
Updating Data Objectst e 18
The Fields Property e 19
Validation and Integrity. 20
Adding and Deleting Data Objects. 20
Adding a Record UsingaDataObject 20
Deleting a Record Usinga DataObject 21
Programming Child Obijects and Collections 21
Whatisa Child Object? i e 21
Child ColleCtion TYPeS . . . oot e e 22
The Standard Child Collection 22

The Child Top Collection s 26

—
-
()
i
Q
©
i e
O

2 CHAPTER 1

The Child View ColleCtion.ot e e 28

The Top View ColleCtion e e e e e e e e 28
Adding and Deleting Child ObjJectSt e 30
Adding a Child ObjeCt. o e e 30
Deleting a Child ObjecCt.o e e e e 31
SOrting CollBCtiONS . .. o e 31

SOl . oo 31

8310 (] [32
Filtering Data Object ColleCtions. i e e e e e 32
Error Handlingo o e e 33
RetUrn Code Basedottt e e 33
Error Code Based.o 33
User Interface (Ul) ODjects. i e e e e e 34
DAt ENtry FOIMS. . o 35
Showing a Standard FOrm o e 35
Raiser’s Edge ACtiveX CoNtrolS. o i e e 37
DAt Gl . . . oot e 39
ATIDULES GO . . . oo 41
Phones/EmMail/Links Grid. o e 44
SEIVICE OB BCS. . . o 44
QUETY O CES . v vttt e 45

OPENING @ QUETY. . . ottt e e e e e 45

Processing a QuUery ResSUIt Set 45

Creating Static QUEIIES. . . .ottt 46
REPOIt OB JECtS . . .o e 49
Reports Categories ColleCtion i 49
Reports Types ColleCtion.o e 51
Report Instances ColleCtion. o 52
Report ObjJectS SamMPIe . .. o 54
Code Tables SerVer . . . 56
Table Lookup Handler o 59
A DULE TYPE SOI VL. . o ot e e e 62
ANNOTALION FOMM . o 65

Using the Annotation FOrm ObjJect e e 65
NOtEPAd FOMM L e e 67

Using the Notepad FOrm Object. o e e e e e 67
MEdia FOIM L o e 69

Using the Media FOrm Object o e e 69
PrO I Y VBT . . o e e 72

Using the Property VieWero e 72
AN SO BN, ot ittt e 74

Using the Search Screen ObjeCt. o i 74
MISCUL . . 77

Using the MiscUIL ObjeCt e e 77
Advanced Concepts and INterfaces i e e 79
Using the IBBDataObject Interface. e e 80
Using the IBBMetaField Interface. e e e 81
TrANSACTIONS . .« o o ottt et e 83
Custom View: Creating CuStom Parts. e e e e 84
CUSIOM PaITS . . o 84

Adding a CUSIOM Parto 85

ESSENTIALS 3

This guide provides Visual Basic developers with all the information needed to customize and enhance

The Raiser’s Edge. From a quick VBA macro to a full blown application based on The Raiser’s Edge Object API,
you can find what you need here. A wealth of programming samples are provided to illustrate key concepts and
provide you with a solid foundation on which to build your custom Raiser’s Edge solutions.

Please remember...

We provide programming examples for illustration only, without warranty either expressed or implied,
including, but not limited to, the implied warranties of merchantability and/or fitness for a particular purpose.
This guide assumes you are familiar with Microsoft Visual Basic and the tools used to create and debug
procedures. Blackbaud Customer Support can help explain the functionality of a particular procedure, but they
will not modify, or assist you with modifying, these examples to provide additional functionality. If you are
interested in learning more about The Raiser’s Edge VBA and API optional modules, contact our Sales
department at solutions@blackbaud.com.

The programming examples and related code provided to you via this guide are the property of Blackbaud, Inc. and
you may not copy, distribute, convey, license, sublicense, or transfer any rights therein. All examples are subject to
applicable copyright laws.

We hope you find this guide useful as you develop for The Raiser’s Edge. If you are not sure if this material is
targeted for you, see “Using This Guide” on page 3.

If you have programmed in Visual Basic before, we suggest you review the “Documentation Map” on page 4. This
map is a great starting point from which you can navigate to the particular aspect of Raiser’s Edge programming
that interests you.

Using This Guide

This guide is for developers who are creating solutions for The Raiser’s Edge. These solutions range from creating
a basic VBA procedure to large, complex addition to The Raiser’s Edge.

The information is laid out in a clean, progressive fashion. We introduce concepts and techniques gradually. If you
are familiar with Visual Basic programming and object-oriented programming concepts, the content will be useful.
VBA programming in The Raiser’s Edge should be very familiar to anyone who has written either Visual Basic
code or VBA code in other applications (Microsoft Office, for example). API for Advanced Application
Development should be easy for any developer who has used COM objects from Visual Basic.

This information is not for everyone. To cover the material in a useful manner, we had to make certain assumptions
about your level of knowledge. If you are comfortable with the Visual Basic language and you understand data
types, variable scoping, and how to use the Visual Basic Editor, then this guide is for you. If not, your time may be
better spent with one of the many fine introductory materials available. Actually, one of the best resources is the
online help provided with VBA.

For more information...

Visit Blackbaud’s Web site at www.blackbaud.com for software customization FAQs, code samples, and other
helpful information, such as error explanations. The VBA\API Web site page is one of your primary sources of
information for customizing your Raiser’s Edge software. You can also send an email to
dssupport@blackbaud.com or call 1-800-468-8996 for support assistance.

4 CHAPTER 1

Documentation Map

This guide is broken down into logical sections, each designed to help you learn and use a particular aspect of the
available extensibility technologies. Because there is important information that applies to both VBA for Advanced
Customization and API for Advanced Application Development optional modules, some documentation for both
products is included in the Essentials chapter. If you come across VBA or APl information that is not applicable to
your organization’s Raiser’s Edge software package, contact Sales at solutions@blackbaud.com for more
information.

The Essentials

This chapter introduces key concepts that you need to understand as you program with The Raiser’s Edge.

Visual Basic for Applications (VBA)

This chapter details VBA support in The Raiser’s Edge. VBA is an extremely powerful, industry-standard
programming environment built right into The Raiser’s Edge.

Application Program Interface (API)

This chapter exposes core functionality using API, enabling developers to build custom solutions that leverage
Raiser’s Edge technology through a set of easy to use COM objects.

Programmer’s Reference

This section, located only in the help file, provides a detailed listing of all objects and services available to
developers programming with The Raiser’s Edge object model.

Programming Language

The code samples in this guide are written using Visual Basic 6.0 language. This language is shared by VBA,
Microsoft Visual Basic 6.0, Microsoft Office 2000, and other VBA 6.0 host applications. While it is possible to use
API from other languages (C++ or Java, for example), Blackbaud can only provide support regarding Visual Basic
programming.

Sample Code

Periodically, we provide code samples to illustrate a point. Code samples always appear in the following format.

"Programming Example -
" we will put VB code comments in Green

Dim oGift as CGift
Set oGift = New CGift

oGift.Init REApplication.SessionContext

Note....

You may notice occasional line breaks in the code due to layout constraints. All line breaks are documented with
the standard “ _ ” in the code sample.

ESSENTIALS 5

Note that we sometimes clarify points in the code samples using standard Visual Basic comments. To accentuate
them, all comments appear in green.

Raiser’s Edge Programming Essentials

This section covers the items that make the foundation of Raiser’s Edge programming. We introduce the terms and
skills you need to use Raiser’s Edge objects, and we take you step-by-step through several simple examples.

Objects and Object Models

This section provides a general overview of COM automation objects and object models.

The Raiser’s Edge Type Library

The Raiser’s Edge Type Library provides “early bound” access to the system’s objects and functions with any
COM compatible language.

The SessionContext

This section introduces the most important object in the system. No Blackbaud programming task can be tackled
without using a SessionContext.

Initializing and Releasing Objects

This section outlines the mechanics of creating and destroying objects, as almost every object in The Raiser’s
Edge must be initialized and released in the same fashion.

Data Objects

All data elements in The Raiser’s Edge are modeled using data objects. Data objects provide a high-level COM
programming interface to every data record in The Raiser’s Edge.

User Interface (Ul) Objects

User interface objects allow for programmatic access to many of the forms and windows that comprise
The Raiser’s Edge user interface.

Service Objects

These objects provide a high-level interface to the system level functionality in various Raiser’s Edge modules
such as Query, Export, and Reports.

Advanced Concepts and Interfaces

This section discusses some advanced topics such as Interfaces and Transactions, that are available in The Raiser’s
Edge object model.

6 CHAPTER 1

Objects and Object Models

The Raiser’s Edge was built from the ground up using objects. Nearly everything you do in Visual Basic involves
manipulating objects.

Please remember...

Every Raiser’s Edge data element—such as each constituent, gift, campaign—is an object that you can
manipulate programmatically in Visual Basic.

Every data element — each constituent, gift, campaign, and so on — is an object that you can manipulate
programmatically in Visual Basic. Once you understand how to work with objects, you are ready to program
The Raiser’s Edge.

What Are Objects and Object Models?

The Raiser’s Edge consists of two things: content and functionality. Content refers to the data elements the system
contains: the constituents, gifts, contacts, campaigns, funds, and appeals. Content also refers to information about
attributes of individual elements in the application, such as the amount of a gift or the number of registrants for an
event. Functionality refers to all the ways you can work with the content in The Raiser’s Edge — for example,
opening, closing, adding, or deleting records in the application.

Content and functionality are broken down into discrete, related units called objects. You are probably already
familiar with some of these objects, as elements of The Raiser’s Edge user interface. One example is the
constituent record, which is presented as one window with many tabs allowing access to subsets of the
constituent’s object model.

To become a productive Raiser’s Edge programmer, it is important to understand how the object model is
organized. We built this model with the goal of providing consistent, hierarchical access to all the data elements in
the system. Blackbaud’s development team used these very same objects to build The Raiser’s Edge!

The Raiser’s Edge object model has one major goal: to expose all important functionality and data needed to
manipulate the database records and services in a high-level manner.

The Raiser’s Edge Object Model

The Raiser’s Edge object model is best described as a group of object models. Each major record type in the
system has its own hierarchical object model. For example, the Gift has a large model comprised of “child” objects
such as installments, split funds, and attributes. The concept of a child object is an important one to grasp. By child
object, we mean an object that is only accessible via an object that is above it in the object model. You cannot
create child objects as free standing objects; they must be created via a method on their parent’s object. By building
these models to reflect the layout of their real-world counterparts, the task of programming an extremely large,
complicated relational database such as The Raiser’s Edge is simplified to a manageable level.

In addition to containing lower-level objects, each object in the hierarchy contains content that applies to both the
object itself and all objects below it.

Data Objects

The Raiser’s Edge object model is based primarily around the data that the program manages. It does not expose
the interface as a programmable entity. Because the key to your Raiser’s Edge system is the data that it manages,
data objects are the key to programming The Raiser’s Edge.

ESSENTIALS 7

Let’s take a look at a simple example. In The Raiser’s Edge, constituents can be assigned a constituent code.
Constituent codes are used to denote important information on each record (such as Alumni, Past Parent, Major
Donor). A constituent can have any number of constituent codes on her record (in relational database terms there is
said to be a “one-to-many” relationship between a record and its constituent codes). A constituent code has no
meaning outside of a record. For this reason, in The Raiser’s Edge data object model, the ConstituentCodes object
is a child of the CRecord data object, which is the object in the system that represents constituents.

CRecord

L CorstituentCodes

CCorstituent Code

In this diagram, we see that for each CRecord there is a child object named ConstituentCodes, and the
ConstituentCodes object has child object named CConstituentCode. The ConstituentCodes object name is plural
for a very important reason. It is a collection object. This means it is used to iterate through any number of children
(in this case constituent codes). All collection objects in The Raiser’s Edge object model can be navigated using
“For Each” syntax, which is the standard for navigating VBA collections. Take a look at the next code sample.
Don't worry about the details—they are introduced later in this guide.

"Note: The code to initialize and load a CRecord (oRecord)
" object omitted for brevity

Dim oConsCode as CConstituentCode

"Print all of this constituent®s constit codes to the
" VBA debug window
For Each oConsCode in oRecord.ConstituentCodes

Debug.Print oConsCode.Fields(CONSTITUENT_CODE_fl1d_CODE)
Next oConsCode

The Raiser’s Edge Type Library

The easiest and most efficient way to use Raiser’s Edge objects is through the provided type library. A type library
is a language independent file that provides type information about the components, interfaces, methods, constants,
enumerations, and properties exposed by The Raiser’s Edge. While this online guide discusses only Visual Basic,
type libraries can be used from any language (for example, in Microsoft Visual C++, the developer can use the
#import statement).

Using Early Bound Objects and the Type Library

Without using a type library, Visual Basic is limited to communicating to components through the dispatch
interface, which is slow and provides no compile-time syntax checking. Once you have a reference to The Raiser’s
Edge Type Library, you can use the object browser provided by Visual Basic to explore the objects, and can easily
get help on any property or method.

8 CHAPTER 1

Another incredible productivity gain that becomes available when using type libraries with Visual Basic 5.0 and
higher (or VBA) is Intellisense. If you have worked with VB or VBA, you have probably noticed while

programming with objects that when you hit “.”” after an object variable defined as a type described in a type library
(or Visual Basic component) the code editor appears and displays a list similar to the one in the following graphic.

“% User - User_Macros [Code]

l[GeneraI] _:] ITuturiaI'l j

Option Explicitc

FPublic 3ub Tutorialli)

Dim oConstit As CRecord
et oConstit = New CRecord

oConstit.Init REApplication.ZfessionContext

oConstit.
E& Actions (e
B Addresses J
EH Aliases
& Appeals

= E& Aftributes

ELI—I =% ClozeDown 2l 7
EH ConstituentCodes = [

VB’s Intellisense feature displays only the properties and methods that are available on the object. In the above
graphic, you see properties and methods such as Actions, Addresses, Aliases. These are all child objects that are
available for a CRecord object. VB can only work this magic if you are using an early-bound object. By
early-bound, we mean an object variable that is declared as a specific type. Take a look at the following code
sample.

"This variable is late bound. While it will still work,
" it will incur significant runtime overhead, and it will
" yield no intellisense

Dim oRecord As Object
Set oRecord = New CRecord

"This early-bound variable provides optimal speed and
" access to the VB/VBA intellisense feature.

Dim oRecordEarly As CRecord
Set oRecordEarly = New CRecord

Using the Type Library from VBA

When you have the optional module VBA, the system automatically sets a reference to The Raiser’s Edge Type
Library when you start VBA. Each of the two provided VBA projects has a reference to the library.

For more information about VBA, see the VBA chapter.

ESSENTIALS

Accessing the References Dialog

%@ Microsoft Visual Basic - Spstem

JEiIe Edit ¥iew Insert Format Debug Run | Tools Add-Ins MWindow Help

a4 System - ActiveGift [Code)
I[General]

You can manually set a reference to the library by selecting Tools, References from the menu bar in VBA

Macros., .. tions) /
Option Explicit Options. .. !
System Properties, .,
Frivate 3ub RaisersEdgeRecOrd Beroreupenlorecord As dbhject, boance
End Zubk
E [00
(General) j I(Declaraﬁons]

Option Explicitc

Private moExcel As Object 'Excel.ip

V—‘t.ion
Frivate moWorksheet As Ohject 'Ex

9

10 CHAPTER 1

Setting a Reference to The Raiser’s Edge Type Library

When you select References, the References dialog appears with a list of various type library references already
set. The most important of these (for our purposes) is Blackbaud Raisers Edge 7 Objects. This is the reference you
must set to gain early-bound access to Raiser’s Edge Objects.

References - User

Available References: Ok

[w] wisual Basic For Applications i] Cancel
W] Raiser's Edge 7.0

[w] OLE Automation
[w] System Browse. .
[w] Microsoft Forms 2.0 Obiject Librar

2lE|ackbaud Raisers Edge 7 Obijects 1]
[JElackbaud RE Activer Contrals 7.0

[JElackbaud RE Interfaces 7.0 Priarity
[l Active Setup Control Library

[ActiveMovie control bvpe library
[Activel Conference Cantrol

[] Actives DLL to perform Migration of M3 Repository ¥
[] AP Mail Parameter DLL 6.2

i_'!ftF‘ Renort Parameter DLL 6.2 [_j:j
4 3

-Blackbaud Raisers Edge 7 Objects -

e

Help

Location; D:ARET\IB\EEREARIZ.Hb

Language: Standard

Note...

If you unmark the System checkbox, you must exit The Raiser’s Edge and enter the program again to restore
System references. System references load when you enter The Raiser’s Edge. Therefore, if you try to add the
reference back on the References dialog, an Automation error generates.

Using the Type Library from an API Application

If you have the optional module API, you need to set a reference to the type library from any Visual Basic project
that you want to gain early-bound access to Raiser’s Edge objects.

ESSENTIALS 11

Accessing the References Dialog from Visual Basic 5.0 and Higher

To set a reference to the library from Visual Basic 5.0 or higher, create a new VB project and select Project,
References from the menu bar.

‘w5, Project] - Microsoft Visual Basic [design]

File Edit “ew | Project Format Debug Rum Tools Add-Ins Window Help
“ o R 919 Add Form
3 add MO Form

| 2 add Module

General 1#) add Class Module
o] A Hﬂr Add User Control
'Tﬁl add Property Page

i

u = o ﬁ Add User Bacurment
EE EH au add File. ., Chrl+D
= [Remove Formi

B F!.EF

Components,., CelHT

The Raiser’s Edge Object Fundamentals

This section introduces the mechanics of using Raiser’s Edge objects. First we introduce “The SessionContext” on
page 11, which is the key to Raiser’s Edge programming. Next, we explain some important methods involved in
“Initializing and Releasing Objects” on page 13. We also break down each object type in the system and provide
code samples and discuss how to use them.

The SessionContext

Whenever you use an object exposed by The Raiser’s Edge object model, it must be initialized first. All objects are
initialized with a very important object parameter, the SessionContext. The SessionContext is the key to
programming The Raiser’s Edge. This object holds information regarding the state of the active instance of

The Raiser’s Edge application.

Please remember....

The SessionContext is the key to programming The Raiser’s Edge. This object holds information regarding the
state of the active instance of The Raiser’s Edge application

When you create new instances of objects and initialize them with a SessionContext, the object queries the
SessionContext for important information they need to operate (for example, a handle to the low-level database
connection interface).

12 CHAPTER 1

Accessing the SessionContext from VBA

When the VBA environment is initialized, The Raiser’s Edge exposes its SessionContext via the API object. The
API object is a global object available to VBA. The most important property on the API object is the
SessionContext. The code sample initializes a CGift object for use in VBA.

Dim oGift as CGift
Set oGift = New CGift

"Use the REApplication object to get a reference to the
" SessionContext
oGift.Init REApplication.SessionContext

"Load Gift 1
oGift.Load 1

"Release reference to Gift Object
oGift.CloseDown

Accessing the Session Context from API

Like VBA, objects must be initialized when using API. It is important to understand that while a few differences
exist, once you understand Raiser’s Edge object programming, the same rules apply to both VBA and the API.

An API application obtains its reference to the SessionContext via the API object. Unlike the REApplication
object, which is automatically initialized and available to VBA in the running instance of The Raiser’s Edge, API
must be initialized by the programmer. The code sample accomplishes the same task as the previous VBA sample.

Dim oAPI as REAPI

"Initialize the APl and log in
Set oAPI = New REAPI

"Log In as Raiser"s Edge user Judy with password *“Admin*
OAPI . Init "Judy™, "Admin

Dim oGift as CGift
Set oGift = New CGift

"Use the API object to get a reference to the
" SessionContext
oGift.Init oAPIl.SessionContext

"Load Gift 1
oGift.Load 1

"Release reference to Gift Object
oGift.CloseDown

Note the similarities to the earlier VBA sample. The first three lines of code in the sample remain constant for any
API application and are usually placed in a section of your API application that is executed only once (for example,
in your main form’s Load event).

ESSENTIALS 13

Initializing and Releasing Objects

To properly initialize a Raiser’s Edge object, you pass a reference to the SessionContext. Almost every top-level
object in The Raiser’s Edge is initialized this way.
The Init and CloseDown Methods

The VBA code sample is representative of almost every sample of object programming code you see in the
The Raiser’s Edge.

Dim oGift as CGift
Set oGift = New CGift

"Initialize the oGift via the iInit method
oGift.Init REApplication.SessionContext

" Load Gift 10
oGift.Load 10

" Properly release reference to Gift Object using the CloseDown method
oGift.CloseDown

Initialize (.Init) with a SessionContext and release (.CloseDown) the object when you are done. If you attempt to
use a Raiser’s Edge object without properly initializing it, a trappable runtime error is raised.

Microsoft Yisual Basic |

Rur-time efror '-2147219868 (80040664 :

Cifk:
Init method must be called before using this object:

Help |

Closing down objects can be harder. If you fail to properly CloseDown an object, potentially all the object
resources remain “alive” and in memory. To many developers, this is known as a “memory leak”. The objects
attempt to detect this situation and raise errors in many situations if a .CloseDown call was not made. In some cases
this type of leak cannot be detected immediately, leading to some hard-to-track bugs. Remember, if it has an .Init
method, it probably has a .CloseDown method also, and you should always make sure you call them both.

Data Objects

Most Raiser’s Edge programming involves data objects. As discussed in “Objects and Object Models” on page 6,
data objects provide a high-level abstraction layer over the records in the underlying Raiser’s Edge database. In
this section we learn the basics of programming with data objects.

Continue End

171\; > CHAPTER 1

Data Object Hierarchy

To manipulate a data record in your Raiser’s Edge system, you initialize and load the appropriate data object.
The Raiser’s Edge object model provides a data object for every editable record in your system. Only a select few
data objects can be instantiated and loaded. Most data objects are “children” of another object in the hierarchy. For
example, your database may have thousands of constituents who are coded with a constituent code of AL
(Alumni). Therefore, in your database there are thousands of ALUMNI constituent code records stored. Alone,
each of these records has little value. However, they do have meaning in the context of the specific constituent to
which they are related. The constituent code object is accessed as a “child” of the constituent object (CRecord, to
be exact).

What Are “Top Level” Objects?

Understanding the parent-child data object relationship is a key concept to grasp as you move forward with data
object programming. Throughout this guide, you see objects at the top of the object hierarchy referred to as “Top
Level Objects”; any objects that are accessible only via a top level object are referred to as “child” objects.

Which objects are parents and which are children? The easiest way to familiarize yourself with the hierarchy is to
look at The Raiser’s Edge application. When end-users are performing day-to-day data entry chores, they access
records through the Records page in The Raiser’s Edge shell.

L)
Constituents

Gifts

Actions

Campaigns
Funds

Appeals

Memberships
Jobs

Ewvents

The previous graphic shows the standard Raiser’s Edge Records page. The highlighted buttons are top level
objects. Just as the end-user must first open a Constituent to access his constituent codes, you, as the developer,
must load a constituent object first before navigating to the constituent’s constituent codes.

In addition to the items above, constituent relationships and event participants are also top level objects.

ESSENTIALS 15

Loading a Data Object

Now that we have introduced some concepts, it is time to start programming with data objects. This section
introduces some common ways to load a data object.

How Many Ways Can | Load a Data Object?

Each data object supports various methods to allow for loading. Each Raiser’s Edge top-level object can be loaded
using any of its unique fields. For example, The Raiser’s Edge does not allow an end-user to save two constituent
records with the same constituent 1D, or two campaign records with the same campaign ID. Given this, you can
load each data object using the underlying record’s unique fields with the LoadByField method.

LoadByField accepts two arguments. The first argument denotes the unique field you use. The second argument
provides the key to search for. Here, you can see another great example of how powerful Visual Basic’s Intellisense
feature can be. Because each top-level data object has a different set of unique fields, the object’s corresponding
LoadByField enumerates these fields in a drop-down list as you fill in the first argument to the LoadByField
method.

Dim oConstit As CRecord
et oConstit = New CRecord

oConstit.Init REApplication.SessionContext

oConstit.LoadByField
LoadByFieldi = {I=En T il =annl= !
= uf_Record_IMPORT_ID

E uf_Record_SO0CIAL_SECURITY_MO

In the code snippet above, we see the programmer has instantiated a CRecord object. As mentioned earlier,
CRecord is the data object that encapsulates individual and organization constituent records. Note the drop-down
list that appeared automatically when the developer entered the unique field argument. Visual Basic “knows”
which arguments are valid in the context of a CRecord because The Raiser’s Edge type library exposes this
information. The productivity boost gained here cannot be overstated. As you program with Raiser’s Edge objects,
you will see that throughout the system, arguments are exposed to Intellisense in this fashion.

An Alternate Method to Load Data Objects—The Database ID

Each record in The Raiser’s Edge is stored in the database. To define database relationships and integrity, the
records are assigned unique values by the Database Management System (DBMS). These values are called Primary
Keys. Each top-level data object can be loaded using this key value with the “Load” method. The load method
accepts just one argument, a long integer representing the primary key of the record you want to load.

16 CHAPTER 1

Code Sample

These code samples show the various ways to load a constituent data object for the hypothetical constituent

“Michael Simpson”. Mr. Simpson has a social security number of 025-64-6381, and a database (primary key) of
166.

Dim oConstit as CRecord
Set oConstit = New CRecord

oConstit.Init REApplication.SessionContext

"Load the record via the Social Security Number
oConstit.LoadByField uf _Record_SOCIAL_SECURITY_NO, "025-64-6382"

"Load the record via the Database 1D
oConstit.Load 166

Using The Raiser’s Edge Search Screen to Load Your Data Object

So far, we have seen how to load a data object given a specific search key. Many times this is a completely
acceptable solution (for example, if you are building your own customized search screen). However, in some cases
you may require a more robust search, or you may want to concentrate on your application and use as many
pre-built components as possible.

ESSENTIALS 17

The Raiser’s Edge exposes its search screen as a programmable entity. Using the standard Raiser’s Edge search
screen from Visual Basic code is easy. The Raiser’s Edge search screen is referred to as a Service Object, meaning
it is an object that provides easy access to Raiser’s Edge functionality. We are jumping ahead a little here—the
many service objects provided by The Raiser’s Edge are discussed later in this guide, but at this point it is
important to at least introduce the concept of using the search screen to load a data object.

Dim oConstit as CRecord

"Access the SearchScreen service object
Dim oServices as REServices

Set oServices = New REServices

oServices. Init REApplication.SessionContext

"Declare variable used to access the SearchScreen
Dim oSearch As IBBSearchScreen

"The services object exposes most common, useful interface dialogs
Set oSearch = oServices.CreateServiceObject(bbsoSearchScreen)
oSearch. Init REApplication.SessionContext

""Tell"” the search dialog to allow for a constituent search
oSearch.AddSearchType SEARCH_CONSTITUENT

*Show The Search form (See Figure 4)
oSearch.ShowSearchForm

"IT The user didn®t cancel - assign the

" record they selected to our data object

IT Not oSearch.SelectedDataObject Is Nothing Then
Set oConstit = oSearch.SelectedDataObject

End IFf

18 CHAPTER 1

The search screen (from the Ul, this is the Open screen) is the end result of the previous code sample. The end-user
is presented with the standard Raiser’s Edge search dialog. If the end-user selects a record, the search service
constructs the appropriate data object, which we access from code via the “SelectedDataObject” property.

/i, Open

&

Find: IEonslituent j Search using query: |<Default>

& Open

Cancel

‘] Add New
Find Constituents that meet these criteria:
Optionz
Last/Org name: I j Address lines: I j
First M ame: I j City: I j
Constituent [D: I j State: I j it Eind o
55N3| j Z|F'3| j Mew Search
Membership [D: I j Clazs of: I j Previous Search
Bank acct no.: I j Credit card no.: I j

[Dizplay inactive constituents [= Check spouse name [Exact match anly [~ Ehiesk rickname
[Display deceased constituents [= Check aliases = | Eheck contact name Expand Besults

UL Bl

Updating Data Objects

Previously in this guide, we explored “Initializing and Releasing Objects” on page 13 and “Loading a Data Object”
on page 15 of data objects. In this section, you learn how to use the data objects to update our database records.

ESSENTIALS 19

The Fields Property

Each data object shares a common and very important property—Fields. The Fields property exposes all the
individual, updatable data elements that make up a data object. Instead of exposing a unique property for each field
on a data object, which would be cumbersome and very hard to extend, Blackbaud’s developers built the Fields
property. With the Fields property, when you access the Fields property from code, a list appears showing the
constants for all valid fields on the object. This way, there is no time spent searching through hundreds of
properties on an object just to find the Name field. This design also enables Blackbaud to easily add new fields as
The Raiser’s Edge evolves, without breaking any existing code. Review the code sample below.

Dirm oGift As CGift
Zet oGift = New CGift

oFift.Init REApplication.lessionContext

oGift.Load 2

oGift.Fields (|

Field: @ GIFT_fld_Acknowledge_Date -
& GIFT_fld_Acknowledge Flag

E GIFT_fld_AddedByld

= GIFT_fd_Adjustrment_Motes

2 GIFT fld_Amount
E GIFT_fld_Amount_Bills
E GIFT_fld_Amount_Coins

In this sample, you can see the developer has accessed the fields property of a gift data object. He is presented with
a drop-down of all the available fields on a gift, and he is selecting “GIFT_fld_amt” (which represents the Gift
Amount field on the gift record). Review the complete code sample below that loads a gift from the database into
the gift data object, increments the Gift Amount field (by $10.00), and then saves the gift.

Dim oGift As CGift
Set oGift = New CGift

oGift.Init REApplication.SessionContext
oGift.Load 2

"Update the gift amount field
" Increment it by 10 dollars...

oGift_Fields(GIFT_fld_Amount) = oGift.Fields(GIFT_fld_Amount) + 10

"Save our changes
oGift.Save

"Clean Up
oGift.CloseDown
Set oGift = Nothing

This sample illustrates how simple it is to update your data using data objects. Remember, if we put invalid data
into the amount field (for example, “xxxx”) when we issue the .Save method on the object, the data object raises a
trappable error.

20 CHAPTER 1

Validation and Integrity
Data object validation goes much further than just filtering out bad data. Every Business Rule in the system is
checked, both internal rules and rules your end-users established using Business Rules in The Raiser’s Edge. For

example, in The Raiser’s Edge, if end-users attempt to over-apply a pledge payment, the following message
appears.

The Raizer's Edge |

@ The total amount applied does not equal the amount of the payment.

If a Visual Basic developer attempts to over-apply a pledge using Visual Basic code, a trappable error is raised with
the same message (accessible via the err.description property on the Visual Basic Error object). You will learn
about trapping and handling data object errors later. For now, it is important to understand this validation exists to
maintain a high level of consistency and integrity in your database.

The main point to remember is the object insulates your database, and no “garbage” can make it to the database
without first being validated by the object. This rule applies to every facet of the data element. The Raiser’s Edge
uses code just like the code provided in the examples, so you can be sure that updates using data objects are
consistent with updates made by end-users in the system.

Adding and Deleting Data Objects

You can add and delete data objects with code.

Adding a Record Using a Data Object

When an end-user wants to add a new constituent record to The Raiser’s Edge, he clicks Records from the
Raiser’s Edge bar, and then clicks New Individual or New Organization. You can also do this through code, as
the following sample illustrates.

"Create a new instance of the CRecord object
Dim oRec As CRecord
Set oRec = New CRecord

"Initialize the object by passing in a valid SessionContext
oRec. Init REApplication.SessionContext

"Set any values and save
oRec_Fields(RECORDS_fld_IS_CONSTITUENT) = "True"
oRec_Fields(RECORDS_fld_LAST NAME) = "Bakker"
oRec.Save

"Always clean up. Objects with an Init() method typically
" have a CloseDown() method.

oRec.CloseDown

set oRec = Nothing

ESSENTIALS 21

Since the CRecord object (remember, CRecord is the data object that represents a constituent in The Raiser’s
Edge) has only one required field, we are able to initialize a new object, set the contents of the Last name field,
and issue a save. All top level objects are added in this exact same manner. Earlier in this guide, we discussed child
objects and the object hierarchy. You access child objects only via a parent (top level) object. Therefore, child
objects are added in a slightly different fashion. For more information about adding and deleting child objects in
detail, see “Programming Child Objects and Collections” on page 21.

Deleting a Record Using a Data Object

You learned how to load a data object from the database (see “Loading a Data Object” on page 15 for more
information). Deleting a record requires just one more line of code. This code sample builds on an earlier sample
where we learned how to load a data object.

Dim oConstit as CRecord
Set oConstit = New CRecord

oConstit.Init oSessionContext

"Load the record via the Social Security Number

" Note: we left out some error trapping here to keep the sample clear
" (for example if this record didn"t exist)

oConstit.LoadByField uf_Record_SOCIAL_SECURITY_NO, "025-64-6382"

"Delete the Record using the Data Object"s .Delete method
oConstit.Delete

oConstit.CloseDown
set oConstit = Nothing

Programming Child Objects and Collections

In this section we examine the details of working with child objects. We also discuss the various types of object
collections exposed in The Raiser’s Edge model.

What is a Child Object?

A child object cannot exist without a top-level object. To repeat an earlier example, if you need to add constituent
codes to a record in The Raiser’s Edge, you must first load a constituent record. When you need to add constituent
codes programmatically, you must also first load and initialize the parent record. This is the best way to
conceptualize child objects.

25‘; > CHAPTER 1

In the following graphic, we see The Raiser’s Edge constituent form. The form encapsulates all the child objects of
a constituent. Note that the constituent codes are all children of this record and are available only through the
constituent's CRecord object.

Constituent Codes]
Diescription Code Date From I Date Ta
[avm |
| |Trustee TR
| |voluntesr WOL
Major Donar MO
Friend FR.

Child objects cannot be created, loaded, saved, initialized, or deleted. All these actions are accomplished via
methods exposed by the child object’s parent object in the hierarchy.

Child Collection Types

Now that you understand the concept of child objects, you can master the details. Not all child objects are the same.
The various types of child objects and collections and the mechanics of programming objects and collections
differ.

Collection Type 1 - “The Standard Child Collection” on page 22
Collection Type 2 - “The Child Top Collection” on page 26
Collection Type 3 - “The Child View Collection” on page 28
Collection Type 4 - “The Top View Collection” on page 28

The Standard Child Collection

The most common use of child objects in The Raiser’s Edge object model is via child collections. A child
collection, which is collection of child objects, cannot exist without a top-level object. You can add and remove
child objects from the collection, but you cannot save child objects without calling the parent’s save method.

ESSENTIALS 23

Why does this seemingly artificial constraint exist? Child objects depend on the parent’s save method because the
parent may have to enforce rules governing membership in the collection. When the parent is saved, all the child
objects in the collection are saved if they are dirty (meaning either their data has been changed since they were
loaded, or they have been newly added), and all the objects that have been removed from the collection are deleted
from the database.

Common Structure Shared By All Child Collections

If you are familiar with programming using Visual Basic collections, then the methods and means for programming
Raiser’s Edge child collections should seem quite natural. The following table lists the common methods and
properties available on every child collection in The Raiser’s Edge object model.

Item Returns a child object given an index.

Add Creates a new child object, stores its membership in the collection, and returns a
reference to it.

Remove Removes a child object from the collection. Once a child object is removed from a
collection it cannot be used.

IBBMoveServer Optional: This establishes how the “VCR” buttons on the form function. This is
covered in detail in Programming Reference.

Count Provides a count of the number of child objects in the collection.

Following standard collection object model design practices, The Raiser’s Edge always has two closely related
classes that handle exposing collections: the parent, which is always named in the plural form (for example,
ConstituentCodes), and the child, which is always named in the singular form (for example, CConstituentCode).

Navigating Child Object Collections

The easiest, most efficient manner for navigating through (also referred to as iterating) child collections is through
the Visual Basic “For Each” syntax. All collections support this format. Review the sample code below.

"Code to initialize and load a CRecord object (oRecord) omitted for brev